priorityq/binheap/lib.go

116 lines
2.7 KiB
Go
Raw Normal View History

2023-03-04 05:18:31 +00:00
// Package binheap implements a non-concurrent binary max-heap.
//
// # Implementation
//
// [H] is parameterized over two types, one for the priority levels, one for
// the elements. Internally, there are two equally-sized buffers for these
// types. Re-heaping operations swap corresponding entries in these buffers
// in lock-step.
package binheap
import "golang.org/x/exp/constraints"
// H is a binary max-heap.
//
// `P` is the type of the priority levels, and `E` the type of the elements.
type H[P constraints.Ordered, E any] struct {
prs []P
els []E
len int
}
// Make creates a new heap.
func Make[P constraints.Ordered, E any](cap int) H[P, E] {
priorities := make([]P, cap)
elements := make([]E, cap)
h := H[P, E]{prs: priorities, els: elements}
return h
}
// Capacity returns the total capacity of the heap.
func (h *H[P, E]) Capacity() int {
return cap(h.prs)
}
// Len returns the number of items in the heap.
func (h *H[P, E]) Len() int {
return h.len
}
// CanExtract returns true if the heap has any item, otherwise false.
func (h *H[P, E]) CanExtract() bool {
return h.len != 0
}
// CanInsert returns true if the heap has unused capacity, otherwise false.
func (h *H[P, E]) CanInsert() bool {
return cap(h.prs)-h.len != 0
}
// Extract returns the current heap root, then performs a heap-down pass.
//
// If the heap is empty, it panics.
func (h *H[P, E]) Extract() (P, E) {
if !h.CanExtract() {
panic("heap is empty")
}
// extract root
priority := h.prs[0]
element := h.els[0]
// move last entry to root position
h.prs[0] = h.prs[h.len-1]
h.els[0] = h.els[h.len-1]
// clear the former last entry position,
// so as not to hold onto garbage
var emptyPriority P
var emptyElem E
h.prs[h.len-1] = emptyPriority
h.els[h.len-1] = emptyElem
// heap-down
h.len--
idx := 0
for {
left := idx<<1 + 1
right := idx<<1 + 2
largest := idx
if left < h.len && h.prs[left] > h.prs[largest] {
largest = left
}
if right < h.len && h.prs[right] > h.prs[largest] {
largest = right
}
if largest == idx {
break
}
h.prs[idx], h.prs[largest] = h.prs[largest], h.prs[idx]
h.els[idx], h.els[largest] = h.els[largest], h.els[idx]
idx = largest
}
return priority, element
}
// Insert adds an item to the heap, then performs a heap-up pass.
//
// If the heap is full, it panics.
func (h *H[P, E]) Insert(priority P, elem E) {
if !h.CanInsert() {
panic("heap is full")
}
// insert new item into last position
idx := h.len
h.prs[idx] = priority
h.els[idx] = elem
// heap-up
h.len++
for {
parent := (idx - 1) >> 1
if parent < 0 || h.prs[parent] >= h.prs[idx] {
break
}
h.prs[parent], h.prs[idx] = h.prs[idx], h.prs[parent]
h.els[parent], h.els[idx] = h.els[idx], h.els[parent]
idx = parent
}
}