priorityq/binheap/lib.go

104 lines
2.2 KiB
Go
Raw Normal View History

// Package binheap implements a binary max-heap.
package binheap
import "golang.org/x/exp/constraints"
// H is a binary max-heap.
//
// `I` is the type of the priority IDs, and `E` the type of the elements.
type H[I constraints.Ordered, E any] struct {
heap []I
elems []E
len int
}
// Make creates a new heap.
func Make[I constraints.Ordered, E any](cap int) H[I, E] {
heap := make([]I, cap)
elems := make([]E, cap)
h := H[I, E]{heap: heap, elems: elems}
return h
}
// Capacity returns the total capacity of the heap.
func (h *H[I, E]) Capacity() int {
return cap(h.heap)
}
// Len returns the number of items in the heap.
func (h *H[I, E]) Len() int {
return h.len
}
// CanExtract returns true if the heap has any item, otherwise false.
func (h *H[I, E]) CanExtract() bool {
return h.len != 0
}
// CanInsert returns true if the heap has unused capacity, otherwise false.
func (h *H[I, E]) CanInsert() bool {
return cap(h.heap)-h.len != 0
}
// Extract returns the current heap root, then performs a heap-down pass.
//
// If the heap is empty, it panics.
func (h *H[I, E]) Extract() (I, E) {
if !h.CanExtract() {
panic("heap is empty")
}
id := h.heap[0]
elem := h.elems[0]
var emptyId I
var emptyElem E
h.heap[0] = h.heap[h.len-1]
h.elems[0] = h.elems[h.len-1]
h.heap[h.len-1] = emptyId
h.elems[h.len-1] = emptyElem
h.len--
idx := 0
for {
left := idx*2 + 1
right := idx*2 + 2
largest := idx
if left < h.len && h.heap[left] > h.heap[largest] {
largest = left
}
if right < h.len && h.heap[right] > h.heap[largest] {
largest = right
}
if largest == idx {
break
}
h.heap[idx], h.heap[largest] = h.heap[largest], h.heap[idx]
h.elems[idx], h.elems[largest] = h.elems[largest], h.elems[idx]
idx = largest
}
return id, elem
}
// Insert adds an item to the heap, then performs a heap-up pass.
//
// If the heap is full, it panics.
func (h *H[I, E]) Insert(id I, elem E) {
if !h.CanInsert() {
panic("heap is full")
}
idx := h.len
h.heap[idx] = id
h.elems[idx] = elem
h.len++
for {
parent := (idx - 1) / 2
if parent == idx || h.heap[parent] >= h.heap[idx] {
break
}
h.heap[parent], h.heap[idx] = h.heap[idx], h.heap[parent]
h.elems[parent], h.elems[idx] = h.elems[idx], h.elems[parent]
idx = parent
}
}